If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-1000x+50000=0
a = 2; b = -1000; c = +50000;
Δ = b2-4ac
Δ = -10002-4·2·50000
Δ = 600000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600000}=\sqrt{40000*15}=\sqrt{40000}*\sqrt{15}=200\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1000)-200\sqrt{15}}{2*2}=\frac{1000-200\sqrt{15}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1000)+200\sqrt{15}}{2*2}=\frac{1000+200\sqrt{15}}{4} $
| -7(y+5)=9y+29 | | r-53=-r-7 | | 3(2x−1)=6 | | 3/4×c+4=3 | | 8p-8-p=-1 | | 6x+4x=10(x+3) | | 75x=-15 | | 2x-4x-8=-8+5x-12 | | 75x=-25 | | -r+6=r+60 | | 2-6m+9m*m-9=1118 | | 7–5y=4y-2 | | 4(y-6)=6y-44 | | 10-6y=34 | | 0.4(25x-75)+18=0.5(8x+36) | | n+91=-n+5 | | 53=-19z+7z | | 2.8x+2.8=2.5x+2.1 | | 9(c−6)=6 | | 12+8p=2(4p+8) | | 2x=2x=3x+1 | | 9(c−6)=63 | | 0.5(2x+54)=0.333(9x+27)-4 | | 3x-17+x-18+6x+15=180 | | 2^x2-12x+32=x2 | | -2/5x1/3x=-30 | | 5x+28=12 | | 11w+66=−77 | | 4x^2-12x-66=0 | | r/8+4=7 | | 5/6x=-4 | | 16x-8=14x+2 |